Air Dispersion Modelling for Surface Finishing Emissions Permitting

Franco DiGiovanni PhD - AirZOne 905-890-6957 ext. 102, fdi-giovanni@airzoneone.com

AirZOne, an employee-owned firm offering environmental services since 1979

- Ambient air quality (monitoring, modelling & permitting)
- Indoor air quality
- Occupational Hygiene & Safety
- Related laboratory analyses
- 30% to 40% of revenues from modelling and permitting

What are Permits?

*Legal permission to emit contaminants * Operation of exhaust equipment

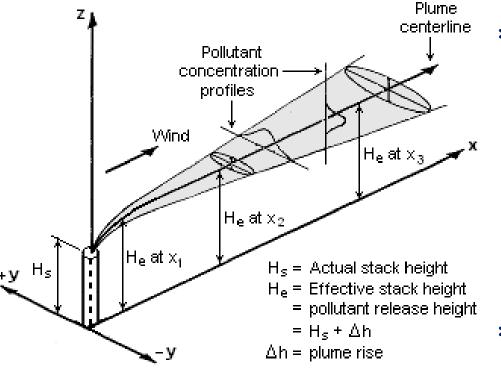
Air Emissions Permits for Surface Finishers in Canada

- Permits are provincial jurisdiction
- Rules and regulations vary province-toprovince
- In parallel to Federal requirements

Why Permission Needed?

- * S. 6 and s. 14 (EPA) prohibit against the discharge of contaminants into the natural environment that cause adverse effects
- * However, s. 9 allows discharge where a permit is issued
- * A permit is issued if the emissions do not cause significant adverse effects i.e. *demonstrate compliance*
- * Pollution (air and noise) can be controlled by controlling at the source, or using "dilution," or both.

The Process


- Owner/operator needs to apply before (6-12 months?) constructing or altering anything
- * Pre-application Consultation
- * Application
- * Public posting
- * Decision
- * Appeal?
- * Permit issued

The Application Package

- * Application form
- * Proof of Legal Entity
- * Air Impact Assessment (ESDM)
- * Noise Impact Assessment form/report
- * Costs
- * Site diagrams
- * Other supporting information e.g., MSDSs

Impacts Assessments: Computer-based Dispersion Models

 A model is used that allows you to predict the dispersion of contaminants emitted from a process exhaust

* Used to determine"worst-case" impacts

Impact Assessment: Air

(1) Quantify worst-case emissions (estimate or measure)

(2) Use a dispersion model to predict impacts at and beyond the fence line

(3) Compare the maximum impacts against the air standards

(4) Produce ImpactAssessment Report(ESDM)

Air Standards

15.1¤	71-36-3¤	Butanol, n-0	-0	920a	-0		
16.¤	7440-43-9¤	Cadmium and Cadmium Compounds	-¤	0.025¤	-0		
17.¤	1305-62-0a	Calcium Hydroxide ^o	-¤	13.5¤	-0		
18.¤	1305-78-8a	Calcium Oxideo	-¤	10¤	-0		
19.¤	1333-86-4a	Carbon Blacko	-¤	10¤	-0		
20.¤	630-08-0¤	Carbon Monoxide ^o	-¤	-0	6000 (half hour)		
21.¤	REVOKED: 0. Reg. 507/09, s. 359(2).0						
22.¤	56-23-5¤	Carbon Tetrachlorideo	-¤	2.4¤	-0		
23.¤	7782-50-5¤	Chlorine	-¤	10¤	-0		
24.¤	10049-04-40	Chlorine Dioxide	-0	2o	-0		
24.1¤	75-00-3¤	Chloroethane	-0	5,600¤	-0		
25.¤	67-66-3¤	Chloroforme	-120	10	-0		
Note: "On July 1, 2016, Schedule 3 is a mended by adding the following items: "							
25.1¤	7440-47-3¤	Chromium Compounds (Hexavalent)a	-¤	-¤	0.00014; annual		
25.24	7440-47-3¤	Chromium and Chromium Compounds (Metallic, Divalent and	-0	0.5¤	-0		
		Trivelent)					
See:O. °Reg. 282/11, 'ss. °16 (4), 20 (1).2							
See: "O	.°Reg. 282/11, ss.	°16·(4),·20·(1).¤					
See: "O	.°Reg.·282/11,·ss. 7440-50-80	°16·(4),·20·(1).¤ Copper©	-0	50o	-0		
			-0	500 750	-0 -0		
26.¤	7440-50-8¤	Coppera					

Where is compliance measured?

* Air:

- * Industrial facility plant property line and beyond
- Hospital, school on-site receptors; property line and beyond
- Multi-tenant building boundary between tenants, neighbours air intakes/openable doors and windows; property line and beyond

* Noise:

* Sensitive receptors (houses, daycare, schools, churches, etc..)

Models Available

* US EPA Models: SCREEN3, AERMOD

* Same structure - ASHRAE

But before you start modelling....

Use of conservative dispersion modelling factors

Table 3-1: Conservative	Dispersion Factors	(1 hour averaging time period)
-------------------------	--------------------	--------------------------------

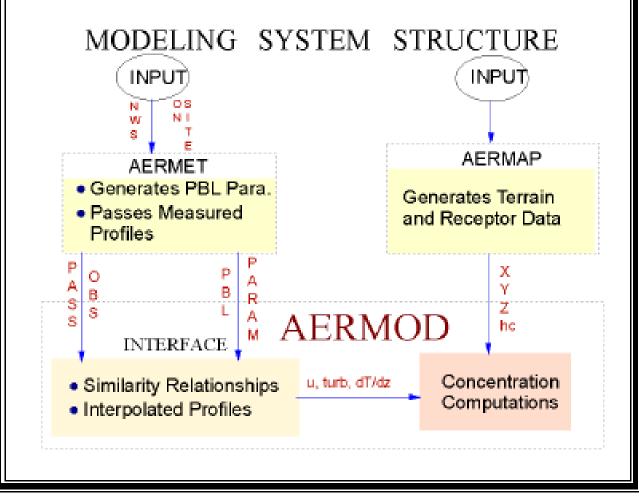
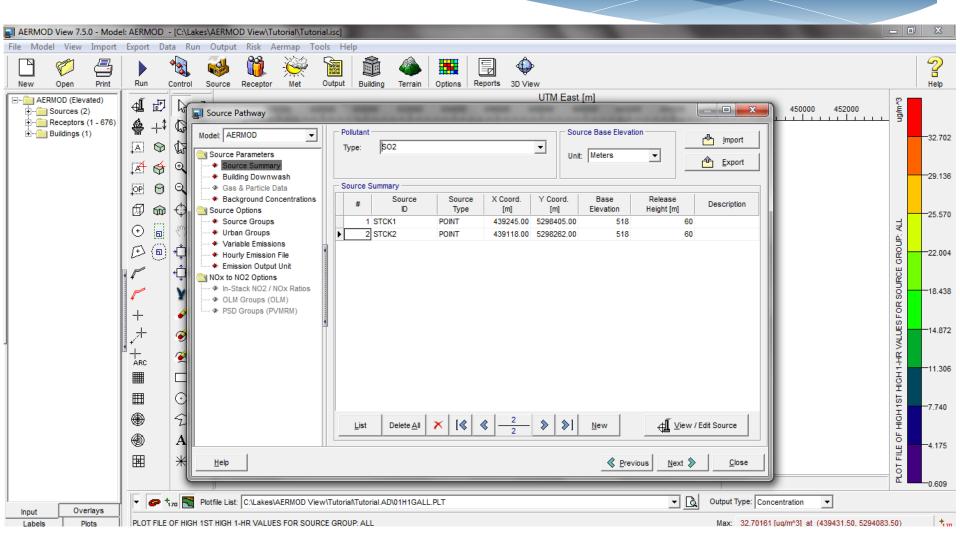
Distance (m)	Urban Dispersion Factor (µg/m³ per g/s emission)	Rural Dispersion Factor (µg/m ³ per g/s emission)
20	8700	10000
40	6300	8100
60	4600	5900
80	3400	5100
100	2600	4500
150	1400	3500
200	900	2800
250	600	2300
300	450	1900
350	350	1700
400	300	1500

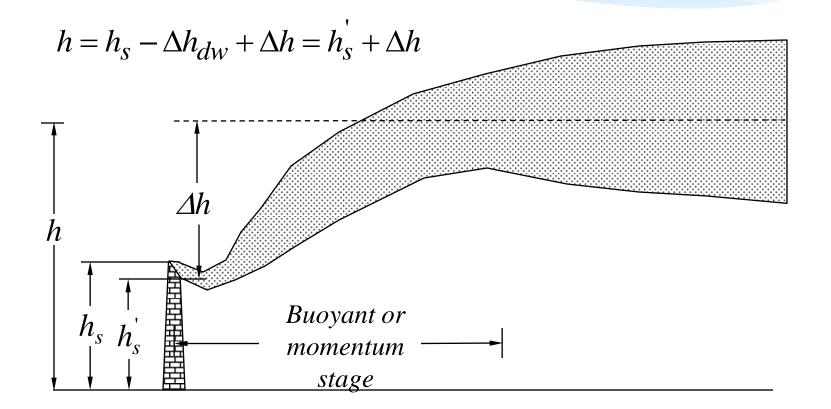
SCREEN3

16:50:30¶ ·*** · ·SCREEN3 ·MODEL ·RUN · ·***¶ · · * ** · VERSION · DATED · 96043 · ***¶ P ·NOx ·- ·E-16MILL-1.1 ·- ·capped ·and ·ST ·d 'wash · · · P ·SIMPLE ·TERRAIN · INPUTS: ¶ ····SOURCE ·TYPE ······= ·····POINT¶ ····EMISSION · RATE · (G/S) ····= ····. 455098 ····¶ ····STACK ·HEIGHT · (M) ·····= ·····3.5100¶ ····STK·INSIDE·DIAM·(M) ····=····5.0000¶ ····STK·EXIT·VELOCITY·(M/S)=·····.7800¶ ····STK · GAS · EXIT · TEMP · (K) ··= ···· 323.0000¶ \cdots AMBIENT AIR TEMP (K) $\cdots = \cdots 305.0000$ ····URBAN/RURAL · OPTION · · · · = · · · · · · · URBAN¶ ····BUILDING ·HEIGHT · (M) ····= ·····16.9200¶ ····MIN·HORIZ·BLDG·DIM·(M) ·= ····120.0000¶ ····MAX ·HORIZ ·BLDG ·DIM · (M) ·= ···· 483.0000¶ P ·THE ·REGULATORY · (DEFAULT) ·MIXING · HEIGHT · OPTION ·WAS · SELECTED. ¶ ·THE ·REGULATORY · (DEFAULT) ·ANEMOMETER ·HEIGHT ·OF ·10.0 ·METERS ·WAS ·ENTERED.

- * Usually confined to single, "simple" sources
- * Not much less work than a "simple" implementation of AERMOD

AERMOD


Figure 2: Data flow in the AERMOD modeling system

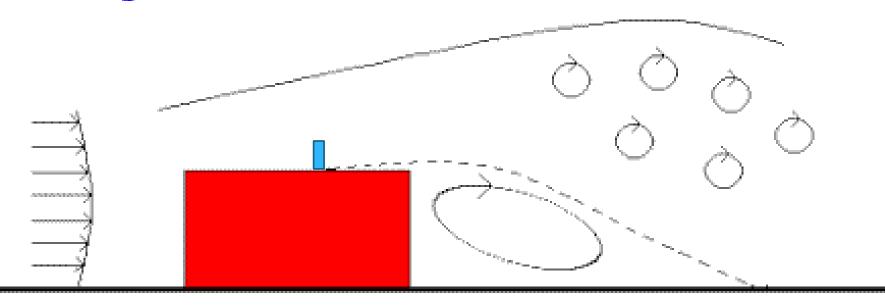
US EPA, 2004

AERMOD

AERMOD: source information

AERMOD: where are your receptors?

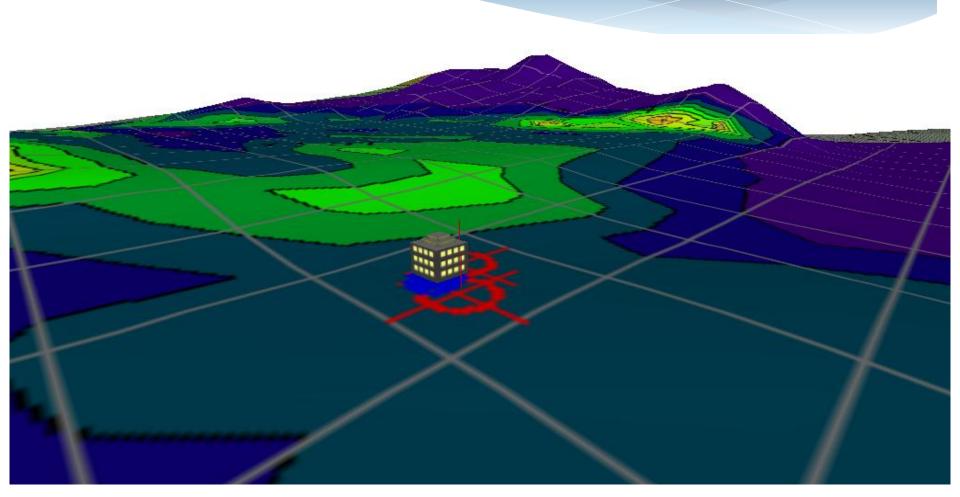
AERMOD: meteorological data


* Surface weather data

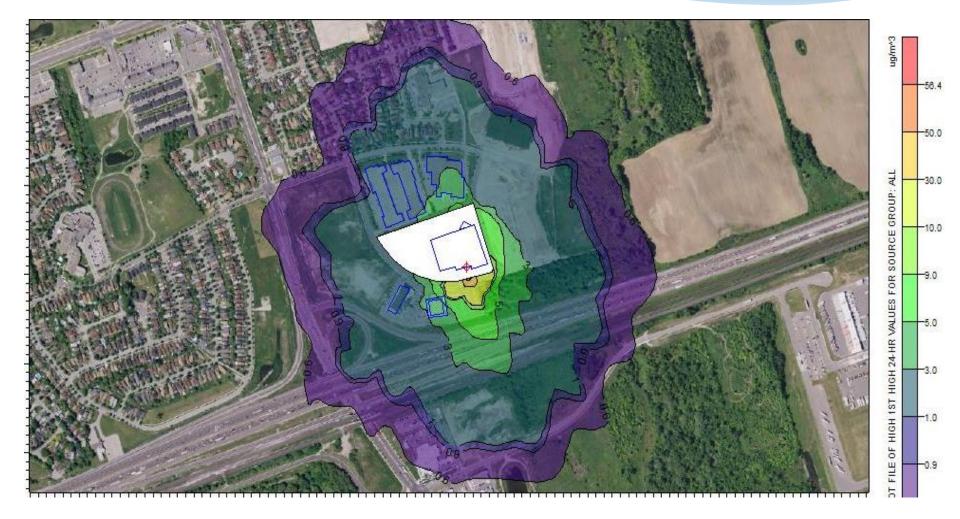
- * Upper air data
- * Airports (usually)
- *MOE default datasets

AERMOD: building size/shape

Building Downwash

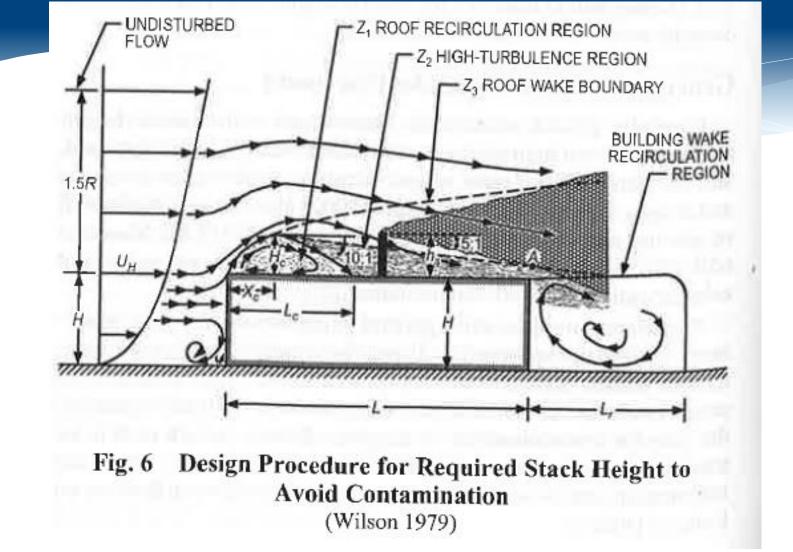


Cavity Length


Reattachment

AERMOD: building size/shape

AERMOD: surrounding terrain



ASHRAE

ASHRAE

ASHRAE, 2011

General Assessment Approach

- Start with simplest (cheapest) methods first to try to show compliance.
- * If those don't work then (progressively) refine methods until you can.
- If you still can't (after maximizing refinement) then you may have to consider controls/mitigation

The End

Thank You!

Questions/Discussion?

